AGENDA

Synchro

HCM 2010

SimTraffic

Tools for Analysis of Capacity and Efficient Flow for Roundabout Design: Part III, Synchro & SimTraffic

Synchro

- Synchro
- HCM 2010 SimTraffic

- HCM 2010
- Coding Requirements
- Example
- Differences between Synchro & SimTraffic
- SimTraffic Calibration for Roundabouts

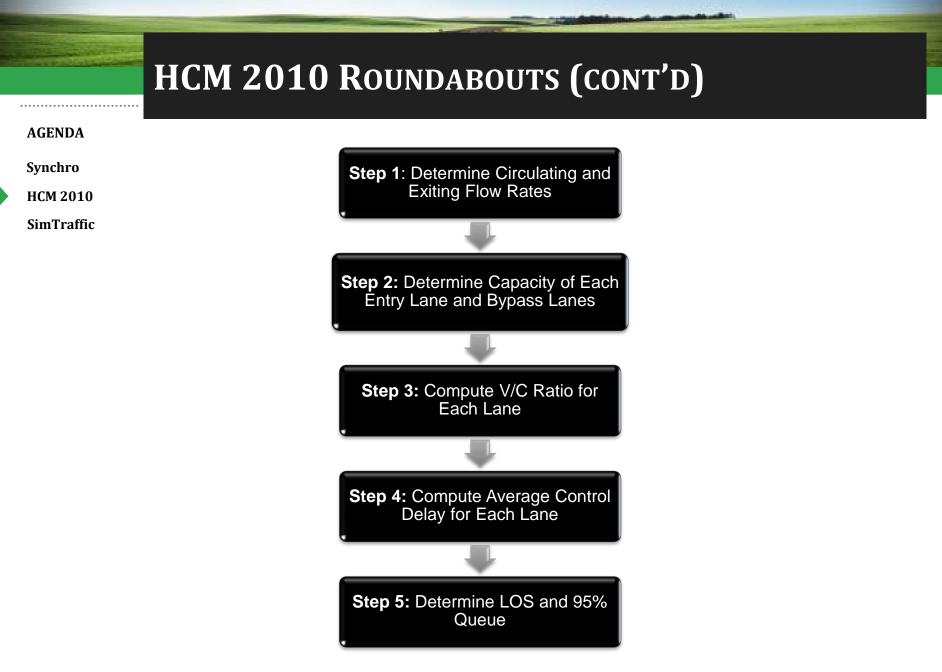
Synchro 9 Defined

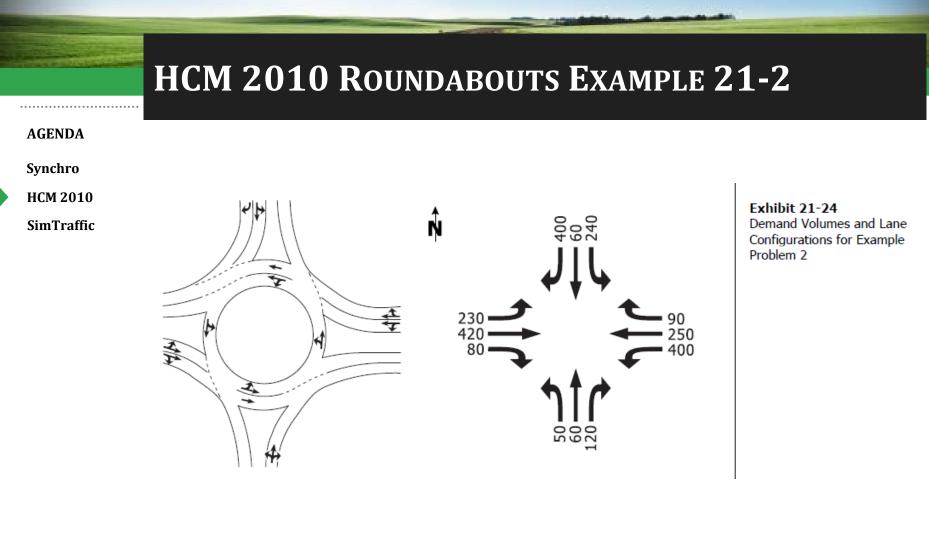
AGENDA

Synchro HCM 2010 SimTraffic

- Software package for modeling and optimizing traffic signal timings.
 - Capacity Analysis
 - Coordination
 - Actuated Signals
 - Time-Space Diagram
 - Integration with SimTraffic
- Analysis of TWSC & AWSC Intersections
- One/Two-Lane Roundabouts

Synchro's Methodologies


AGENDA


- Synchro HCM 2010 SimTraffic
- Unsignalized Intersections
 - All-Way Stop Control (HCM 2000 & 2010)
 - Two-Way Stop Control (HCM 2000 & 2010)
 - Roundabouts (HCM 2010)
- Signalized Intersections
 - Percentile Delay
 - HCM 2000
 - HCM 2010

HCM 2010 ROUNDABOUTS (CHAPTERS 21 & 33)

AGENDA Synchro

- HCM 2010 SimTraffic
- Based on empirical data within US
- Lower capacities than other countries
- Analysis of two-lane roundabouts
 - Lane-by-lane analysis for multilane roundabouts
- Entry, exit and conflicting flow rates
- Capacity function of conflicting flow
 Right & left computed separately
- Right-turn by-pass lanes considered
 - Either yielding exits or free flowing
- Encouraged to calibrate to local conditions
 - Critical and follow-up headways

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 AGENDA _ 🗆 🗙 🏶 Synchro 9 - C:\Users\TRohlfs\Documents\Trafficware\Training\Intermediate\21-2 HCM2010_Roundabout.syn File Edit Transfer Options Optimize Help **Synchro** ╞╸┟╡╘╬╺┑┍╸ **HCM 2010** Zoom 🖑 🕂 🤍 🔍 🔍 🗸 - Map 💒 💉 🔍 🕂 👎 Þ 🔹 🖬 Tmplts 💠 🛧 飰 🏦 👫 🕆 🕸 🖉 🛛 Node 🔒 🇱 🤰 丛 🕑 VB 💁 LOS ICU -SimTraffic Link 😭 🧖 🙀 🙀 DST 🔹 🗉 Ln / Mrt 🥕 🏭 🚳 🞯 🚱 😑 📳 պ LOS 💠 🔹 HCM 2010 - Node 🕰 LOS Ln / Mrt 📳 🛶 LOS 🗸 ►90 ←250 ≮400 230**≯** 420→ 80~ 1,214 1,086

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 Key Inputs

AGENDA

Synchro

HCM 2010

<u>File Edit Transfer Options</u>	: <u>O</u> ptimiz	e <u>H</u> elp										
📙 📕 📈 🚧												
	\$8 (X	S.		HCM 2010	Vie Por	ew Rts 🚽	5 🍫	٩	3			
× • ++	\											
LANE SETTINGS	▶ EBL	→ EBT	EBR	WBL	← WBT	N BR	NBL	↑ NBT	/ NBR	SBL	↓ SBT	√ SBR
Lanes and Sharing (#RL)		र सीने			4 b			\$			र्भ	7
Traffic Volume (vph)	230	420	80	400	250	90	50	60	120	240	60	400
Future Volume (vph)	230	420	80	400	250	90	50	60	120	240	60	400
Street Name												
Link Distance (ft)	—	1000	—	_	1000	—	—	1000	—	—	1000	—
Link Speed (mph)	—	30	—	—	30	—	_	30	—	—	30	—
Set Arterial Name and Speed	— I	EB	_	- 1	wв	_	-	NB	_	-	SB	—
Travel Time (s)	-	22.7	-	_	22.7	_	_	22.7	_	_	22.7	—
Ideal Satd. Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12
Grade (%)	-	0	-	_	0	_	_	0	_	_	0	_
Area Type CBD	_		—	_		_			_	_		—
Storage Length (ft)	0	_	0	0	_	0	0	_	0	0	_	0
Storage Lanes (#)	-		-	_	_	_	—	—	—	_	_	—
Right Turn Channelized	—	—	None	—	—	None	—	—	None	—	—	None
Curb Radius (ft)	-	_	-	_	_	_	—	_	_	_	_	—
Add Lanes (#)	-	_	-	_	_	_	_	_	_	_	_	—
Lane Utilization Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Right Turn Factor	—	0.984	—	_	0.982	_	_	0.930	—	_	1.000	0.850
Left Turn Factor (prot)	—	0.984	—	_	0.974	—	_	0.989	—	_	0.962	1.000
Saturated Flow Rate (prot)	—	3329	_	—	3288	-	—	1713	-	—	1792	1583
Left Turn Factor (perm)	_	0.984	_	—	0.974	—	—	0.989	—	—	0.962	1.000
Right Ped Bike Factor	—	1.000	_	_	1.000	-	_	1.000	-	_	1.000	1.000
Left Ped Factor	—	1.000	—	—	1.000	—		1.000	—	—	1.000	1.000
Saturated Flow Rate (perm)	—	3329	—	_	3288	_	_	1713	—	_	1792	1583
Right Turn on Red?	—	—		—	—		—	_		—	—	
Saturated Flow Rate (RTOR)	-	0	-	_	0	-	_	0	-	_	0	0
Link Is Hidden	-		-	-		-	—		-	—		—
Hide Name in Node Title	-		-	_		-	_		-	-		—

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 Key Inputs

AGENDA

Synchro

HCM 2010

📙 🔚 🔏 🚧																
			- T 🍫	•	3											
× • • • •	•															
NODE SETTINGS		TIMING SETTINGS	EBL	→ EBT	EBR	WBL	← WBT	WBR	NBL	↑ NBT	/F NBR	SBL	↓ SBT	SBR	AR PED	но
Node #	3			4î 🎙 👻			ፋጉ			4			ب ا ا	1	_	
Zone:		Traffic Volume (vph)	230	420	80	400	250	90	50	60	120	240	60	400	-	
< East (ft):	1000	Future Volume (vph)	230	420	80	400	250	90	50	60	120	240	60	400	-	
/ North (ft):	1000	Turn Type	Perm	—	_	Perm	—	—	Perm	—	—	Perm	_	Perm	-	
Z Elevation (ft):	0			4	-		8	-		2	-		6			
Description		Permitted Phases	4		-	8		—	2		—	6		6	—	
Control Type	Pretimed	 Permitted Flashing Yellow 	-	-	-	—	-	-	—	-	-	-	-	-	-	
Cycle Length (s):	Reserved	Detector Phases	4	4	-	8	8	-	2	2	-	6	6	6	-	
.ock Timings:	Pretimed Actd-Uncrd	Switch Phase	0	0	-	0	0	-	0	0	-	0	0	0	-	
Optimize Cycle Length:	Semi Act-Uncrd	Leading Detector (ft)	-	100	-	-	100	-	—	100	—	-	100	20	-	
Optimize Splits:	Actd-Coord	Trailing Detector (ft)	-	0	-	_	0	-	_	0	-	-	0	0	-	
Actuated Cycle(s):	Unsig Roundabout	Minimum Initial (s)	4.0	4.0	_	4.0	4.0	_	4.0	4.0	_	4.0	4.0	4.0	-	
Natural Cycle(s):	50.0	Minimum Split (s)	20.0	20.0	_	20.0	20.0	-	20.0	20.0	-	20.0	20.0	20.0	-	
Max v/c Ratio:	0.93	Total Split (s)	20.0	20.0	_	20.0	20.0	_	20.0	20.0	_	20.0	20.0	20.0	-	
ntersection Delay (s):	22.9	Yellow Time (s)	3.5	3.5	-	3.5	3.5	-	3.5	3.5	-	3.5	3.5	3.5	-	
ntersection LOS:	C	All-Red Time (s)	0.5	0.5	_	0.5	0.5	_	0.5	0.5	_	0.5	0.5	0.5	-	
CU:	0.86	Lost Time Adjust (s)	-	0.0	-	_	0.0	-	_	0.0	-	-	0.0	0.0	-	_
CU LOS:	E	Lagging Phase?	-	_	_	_	_	_	_	_	_	_	-	-	-	
Offset (s) :	0.0	Allow Lead/Lag Optimize?	-	-	-	_	_	-	_	_	-	-	-	-	-	_
Referenced to:	Begin of Green	Recall Mode	Max	Max	_	Max	Max	_	Max	Max	_	Max	Max	Max	-	
Reference Phase:	2+6 · NBTL SBTL	Speed limit (mph)	_	30	-	-	30	-	_	30	-	-	30	-	-	_
Aaster Intersection:		Actuated Effct. Green (s)	-	16.0	_	_	16.0	_	_	16.0	_	_	16.0	16.0	-	
rield Point:	Single	Actuated g/C Ratio	-	0.40	-	-	0.40	-	-	0.40	-	-	0.40	0.40	-	_
Aandatory Stop On Yellow:		Volume to Capacity Ratio	-	1.05dl	_	_	1.76dl	_	_	0.35	_	_	0.64	0.48	-	
		Control Delay (s)	-	34.1	-	-	29.8	-	-	6.1	_	-	17.9	3.3	-	_
		Queue Delay (s)	-	0.0	_	_	0.0	_	-	0.0	_	_	0.0	0.0	_	
		Total Delay (s)	-	34.1	-	-	29.8	-	-	6.1	_	-	17.9	3.3	-	_
		Level of Service	-	С	_	_	С	_	_	A	_	_	В	A	_	
		Approach Delay (s)	-	34.1	-	-	29.8	-	_	6.1	_	_	9.5	_	_	_
		Approach LOS	-	C	_	-	C	_	_	A	_	_	A	_	-	
		Queue Length 50th (ft)	-	76	-	-	75	-	-	16	_	-	53	0	_	_
		Queue Length 95th (ft)	-	#176	_	_	#174	_	_	49	_	_	#144	37	_	
		Stops (vph)	-	535	-	-	541	-	_	80	_	_	226	48	-	
		Fuel Used (g/hr)	_	14	_		13	_	_	3	_	_	5	4		
		. dor o dos (grini)			4									-		_
√¶ø2 (R)					40	4										
1 Ø2 (R)																

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 Key Inputs

AGENDA

		s <u>O</u> ptimize <u>H</u> elp		Changed to Ci		C - ++;										
				Changed to Sig	gning	Setti	ngs									
	» 🚫 👓	N (S (S	J J		5 🍫	®	3									
× 📰	●→→	•														
NOD	ESETTINGS			SIGNING SETTINGS	EBL	→ EBT	EBR	V BL	← WBT	WBR	NBL	↑ NBT	NBR	SBL	↓ SBT	♦ Si
Node #		3		Lanes and Sharing (#RL)		- 41»			ፋጉ			4			र्भ	_
Zone:				Traffic Volume (vph)	230	420	80	400	250	90	50	60	120	240	60	
×East (ft):		1000		Future Volume (vph)	230	420	80	400	250	90	50	60	120	240	60	
Y North (ft):		1000		Sign Control	—	Yield	—	—	Yield	_	_	Yield	_	—	Yield	
Z Elevation	t):	0		Max Exit Lanes	—	2	_	_	2	_	_	1	—	_	1	
Description				Right Turn Channelized	—	—	None	—	_	None	_	_	None	_	_	
Control Type		Roundabout	-													
Max v/c Ra	D:	1.00														
Intersection																
Intersection	OS:	-														
ICU:		0.86														
		E														
ICU LOS:	(fft):	28														
Inside Radiu																
Inside Radiu Outside Rad	us (ft):	52														
Inside Radiu Outside Rad Roundabout	us (ft): Lanes (#):	52 2														
Inside Radiu Outside Rad Roundabout Circle Speed	us (ft): Lanes (#):	52 2 18														
Inside Radiu Outside Rad Roundabout	us (ft): Lanes (#): (mph):	52 2 18														

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 Key Inputs

AGENDA

Synchro HCM 2010 SimTraffic

File Edit Transfer Options Q	Optimize Help													
📜 🔚 🔏 🝰 🔶														
II 🥐 🖏 👓 🖞			5 🍫	1										
		~												
HCM 2010 ROUNDABOUT		HCM 2010 ROUNDABOUT		EB			WB			NB			SB	
Node #	3	Entry Lanes		2			2			1			2	
Zone:		Conflicting Circle Lanes		1			1			2			2	
×East (ft):	1000	Exit Lanes		2			2			1			1	
Y North (ft):	1000	Adjusted Approach Flow (vph)		768			779			242			737	
Z Elevation (ft):	0	Demand Flow Rate (pc/h)		806			818			247			751	
Description		Vehicles Circulating (pc/h)		764			372			976			772	
Max v/c Ratio:	0.81	Vehicles Exiting (pc/h)		759			851			594			418	
Intersection Delay (s):	19.7	Follow-Up Headway (s)		3.186			3.186			3.186			3.186	
Intersection LOS:	С	Ped Vol. Crossing Leg (#/hr)		0			0			0			0	
ICU:	0.86	Ped Capacity Adjustment		1.000			1.000			1.000			1.000	
ICU LOS:	E	Approach Delay (sec/veh)		31.5			12.9			13.4			16.7	
Inside Radius (ft):	28	Approach LOS		D			В			В			C	
Outside Radius (ft):	52	Lane	Left	Right	_	Left	Right	-	Left	_	-	Left	Right	-
Roundabout Lanes (#):	2	Critical Headway (s)	5.193	5.193	_	5.193	5.193	_	4.113	_	-	4.293	4.113	-
Circle Speed (mph):	18	Designated Moves	LT	TR	_	LT	TR	-	LTR	_	-	LT	R	-
Inside Color:		Assumed Moves	LT	TR	_	L	TR	_	LTR	—	-	LT	R	-
Transparent Circle:		Right Turn Channelized	_	_	-	_	_	-	_	_	-	_	_	-
		Lane Utilization	0.470	0.530	_	0.540	0.460	_	1.000	—	-	0.429	0.571	-
		Entry Flow Rate (pc/h)	379	427	-	442	376	-	247	_	-	322	429	-
		Capacity, Entry Lane (pc/h)	526	526	_	779	779	_	571	_	_	633	658	-
		Entry HV Adjustment Factor	0.952	0.953	_	0.952	0.952	-	0.979	_	-	0.981	0.981	-
		Flow Rate, Entry (vph)	361	407	_	421	358	_	242	_	_	316	421	-
		Capacity, Entry (vph)	501	502	_	742	741	-	558	_	-	621	646	-
		Volume to Capacity Ratio	0.720	0.811	_	0.567	0.483	-	0.433		_	0.508	0.652	-
		Control Delay (sec/veh)	27.1	35.3	_	13.9	11.7	-	13.4	_	-	14.2	18.6	-
		Level of Service	D	E	_	В	В	_	В	_	_	В	С	-
			6	8			3		2		_	3	5	_

Maximum volume to capacity ratio

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 Key Inputs

AGENDA

Synchro HCM 2010 SimTraffic

Synchro 9 - C:\Users\TR	ohlfs\Documents\Tra	afficware\Training\Intermediate	21-2 HCM2010_Round	about.syn		- - ×
<u>File Edit Transfer Options</u>	s <u>O</u> ptimize <u>H</u> elp					
📜 🚽 🔏 🛸	$\checkmark \rightarrow \blacksquare$					
🛄 🦄 🏹 🚥	ti 🛞 🕵		5 🍫 🚸 🔹			
× • • •	•	-		1		
HCM 2010 ROUNDABOUT		HCM 2010 ROUNDABOUT	EB	WB	NB	SB
Node #	3	Entry Lanes	2	2	1	2
Zone:		Conflicting Circle Lanes	1	1	2	2
×East (ft):	1000	Exit Lanes	1	2		1
Y North (ft):	1000	Adjusted Approach Flow (vph)	768	779	242	737
Z Elevation (ft):	0	Demand Flow Rate (pc/h)	806	010	47	754
Description		Vehicles Circulating (pc/h)	764		1.1.1.1.1	
Max v/c Ratio:	0.81	Vehicles Exiting (pc/h)	759		<i>2 b</i>	
Intersection Delay (s):	19.7	Follow-Up Headway (s)	3.186			
Intersection LOS:	С	Ped Vol. Crossing Leg (#/hr)	0			
ICU:	0.86	Ped Capacity Adjustment	1.000			
ICU LOS:	E	Approach Delay (sec/veh)	31.5		1	
Inside Radius (ft):	28	Approach LOS	D		in the local sector	
Outside Radius (ft):	52	Lane	Left Right –	· · · · · · · · · · · · · · · · · · ·		
Roundabout Lanes (#):	2	Critical Headway (s)	5.193 5.193 -			
Circle Speed (mph):	18	Designated Moves	LT TR –			
Inside Color:		Assumed Moves	LT TR –	- 🔊		- ¥
Transparent Circle:		Right Turn Channelized		A	14	—
		Lane Utilization	0.470 0.530 -		14	-
		Entry Flow Rate (pc/h)	379 427 -			-
		Capacity, Entry Lane (pc/h)	526 526 -	· `.	A I'	-
		Entry HV Adjustment Factor	0.952 0.953 -	-		—
		Flow Rate, Entry (vph)	361 407 -	- \	M7/	—
		Capacity, Entry (vph)	501 502 -	-	$ \setminus //$	—
		Volume to Capacity Ratio	0.720 0.811 -	-		—
		Control Delay (sec/veh)	27.1 35.3 -	-		—
		Level of Service	DE –	-	1 1 17	—
		95th-Percentile Queue (veh)	6 8 -	-	-	

Maximum volume to capacity ratio

HCM 2010 ROUNDABOUTS EXAMPLE 21-2 RESULTS

Control Delay (sec/veh)

95th-Percentile Queue (veh)

Level of Service

Maximum volume to capacity ratio

AGENDA

Synchro HCM 2010 SimTraffic

· · · · · · · · · · · · · · · · · · ·		fficware\Training\Intermediate	\21-2 HCM	//2010_Ro	oundat	oout.syn								×
<u>File Edit Transfer Options</u>	s <u>O</u> ptimize <u>H</u> elp													
📜 🔚 🔏 🝰	$\bullet \rightarrow \blacksquare$													
🔲 🦓 🛃 🚥 1	†8 🐼 (S .		5 🍫	()	3									
× •••	\													
HCM 2010 ROUNDABOUT		HCM 2010 ROUNDABOUT		EB			WB			NB			SB	
Node #	3	Entry Lanes		2			2			1			2	
Zone:		Conflicting Circle Lanes		1			1			2			2	
≺East (ft):	1000	Exit Lanes		2			2			1			1	
Y North (ft):	1000	Adjusted Approach Flow (vph)		768			779			242			737	
Z Elevation (ft):	0	Demand Flow Rate (pc/h)		806			818			247			751	
Description		Vehicles Circulating (pc/h)		764			372			976			772	
Max v/c Ratio:	0.81	Vehicles Exiting (pc/h)		759			851			594			418	
ntersection Delay (s):	19.7	Follow-Up Headway (s)		3.186			3.186			3.186			3.186	
ntersection LOS:	C	Ped Vol. Crossing Leg (#/hr)		0			0			0			0	
CU:	0.86	Ped Capacity Adjustment		1.000			1.000			1.000			1.000	
CU LOS:	E	Approach Delay (sec/veh)		31.5			12.9			13.4			16.7	
nside Radius (ft):	28	Approach LOS		D			В			В			C	
Dutside Radius (ft):	52	Lane	Left	Right	—	Left	Right	—	Left	—	—	Left	Right	—
Roundabout Lanes (#):	2	Critical Headway (s)	5.193	5.193	-	5.193	5.193	—	4.113	—	—	4.293	4.113	—
Circle Speed (mph):	18	Designated Moves	LT	TR	—	LT	TR	—	LTR	—	—	LT	R	_
Inside Color:		Assumed Moves	LT	TR	—	L	TR	—	LTR	—	—	LT	R	—
Transparent Circle:		Right Turn Channelized	—	_	_	_	_	—	_	_	—	_	_	—
		Lane Utilization	0.470	0.530	—	0.540	0.460	—	1.000	—	—	0.429	0.571	—
		Entry Flow Rate (pc/h)	379	427	—	442	376	—	247	—	-	322	429	—
		Capacity, Entry Lane (pc/h)	526	526	—	779	779	—	571	—	—	633	658	-
		Entry HV Adjustment Factor	0.952	0.953		0.952	0.952	_	0.979	_	_	0.981	0.981	—
		Flow Rate, Entry (vph)	361	407	—	421	358	-	242	—	—	316	421	-
		Capacity, Entry (vph)	501	502	_	742	741	_	558	—	-	621	646	_
		Volume to Capacity Ratio	0.720	0.811	-	0.567	0.483	-	0.433	—	-	0.508	0.652	-

27.1

D

6

35.3

Е

8

13.9

В

4

11.7

В

3

13.4

В

2

14.2

В

3

18.6

С

5

HCM 2010 ROUNDABOUTS RESULTS

AGENDA

Synchro

HCM 2010

Control Delay (s/veh)	LOS	v/c > 1
0 – 10	А	F
10 – 15	В	F
15 – 25	С	F
25 – 35	D	F
35 – 50	E	F
> 50	F	F

- Delay Values mimic Unsignalized Thresholds
- Note LOS if v/c > 1.0

HCM 2010 ROUNDABOUTS **OTHER CONSIDERATIONS**

AGENDA

Synchro **HCM 2010** SimTraffic

<u>File Edit Transfer Options</u>	Ontimize Help												_	
							/2A)	$ \rangle$				Ñ		
🛄 🦄 🌄 🚥 🕯	1 🐼 🥵		5 😻		Fr	ree	A F	\leq	11			-1-		
× •••	↓				_	///			11	Y	ielc	ling		
HCM 2010 ROUNDABOUT		HCM 2010 ROUNDABOUT	-		T	7 A			16	J.				
Node #	3	Entry Lanes			1	1 5			H	17-			1	
Zone:		Conflicting Circle Lanes				RI			H	1 ([1	
×East (ft):	1000	Exit Lanes			-	NA			N	<u> </u>			1	
Y North (ft):	1000	Adjusted Approach Flow (vph)				111			6] 🔨				825	
Z Elevation (ft):	0	Demand Flow Rate (pc/h)					S.	T	~ /				943	
Description		Vehicles Circulating (pc/h)					6		//				769	
Max v/c Ratio:	0.97	Vehicles Exiting (pc/h)				```	$\backslash \top$	7,					454	
Intersection Delay (s):	34.8	Follow-Up Headway (s)					$) \vdash$	_/ /			\mathbf{N}		186	
Intersection LOS:	D	Ped Vol. Crossing Leg (#/hr)					$\downarrow \vdash$	47					0	
ICU:	1.50	Ped Capacity Adjustment											000	
ICU LOS:	н	Approach Delay (sec/veh)							/				6.6	
Inside Radius (ft):	28	Approach LOS					11		/				A	
Outside Radius (ft):	40	Lane	L										—	Bypass
Roundabout Lanes (#):	1	Critical Headway (s)	5.193	—	—	5.193	—	/	5.193	_	—	5.193	<u> </u>	-
Circle Speed (mph):	18	Designated Moves	LTR	-	-	LT	-		LTR	—	-	LT	-	R
Inside Color:		Assumed Moves	LTR	_	-	LT	_		LTR	_	-	LT	-	7 -
Transparent Circle:		Right Turn Channelized	—	—	-	—	-	Yield	—	-	-	—	—	Free
		Lane Utilization	1.000	—	-	1.000	—	-	1.000	—	-	1.000	—	_
		Entry Flow Rate (pc/h)	656	_	_	568	_	662	428	-	-	314	-	629
		Capacity, Entry Lane (pc/h)	694	—	-	587	—	718	510	—	-	524	—	1938
		Entry HV Adjustment Factor	0.980	_		0.981	_	0.980	0.981	-	_	0.980	-	0.980
		Flow Rate, Entry (vph)	643	—	-	557	—	649	420	—	-	308	—	617
		Capacity, Entry (vph)	681		_	576	_	704	497	-	_	513	_	1900
		Volume to Capacity Ratio	0.945	—		0.968		0.922	0.845	-	_	0.600	—	0.325
		Control Delay (sec/veh)	46.6	_		56.5	_	41.6	39.7	-	_	20.0	-	0.0
		Level of Service	E E	—	-	F	—	E	E	—	-	С	_	A
		95th-Percentile Queue (veh)	13	_		13	_	13	9	_		4	_	1

HCM 2010 ROUNDABOUTS **OTHER CONSIDERATIONS**

HCM 2010 BOUNDABOUT

AGENDA

Synchro

HCM 2010 SimTraffic

-	HCM 2010 ROUNDABOUT		EB		,	wв		1	NB		9	SB	
Synchro	Entry Lanes		1			1			1			1	
5	Conflicting Circle Lanes		1			1			1			1	
HCM 2010	Exit Lanes		1			1			1			1	
	Adjusted Approach Flow (vph)		643			1207			420			925	
SimTraffic	Demand Flow Rate (pc/h)		656			1230			428			943	
	Vehicles Circulating (pc/h)		487			655			796			769	
	Vehicles Exiting (pc/h)		596			569			347			454	
	Follow-Up Headway (s)		2.500			2,500			2.500			2.500	
	Ped Vol. Crossing Leg (#/hr)		0			0			50			0	
	Ped Capacity Adjustment		1.000			1.000			0.993			1.000	
	Approach Delay (sec/veh)		18.4			19.4			19.0			4.1	
	Approach LOS		C			C			C			A	
	Lane	Left	—	—	Left	—	Bypass	Left	—	—	Left	—	Bypass
	Critical Headway (s)	4.800	—	—	4.800	—	—	4.800	—	—	4.800	—	—
	Designated Moves	LTR	_		LT	_	R	LTR	_	_	LT	_	R
	Assumed Moves	LTR	—	_	LT	—	_	LTR	—	_	LT	—	—
	Right Turn Channelized	_	_	_	_	_	Yield	_	_	_	_	_	Free
	Lane Utilization	1.000	—	_	1.000	—	_	1.000	—	_	1.000	—	—
	Entry Flow Rate (pc/h)	656	_	_	568	_	662	428	_	_	314	_	629
	Capacity, Entry Lane (pc/h)	891	—	_	755	—	915	657	—	_	675	—	1938
	Entry HV Adjustment Factor	0.980	_	_	0.981	_	0.980	0.981	_	_	0.980	_	0.980
	Flow Rate, Entry (vph)	643	—	_	557	—	649	420	—	_	308	—	617
	Capacity, Entry (vph)	873	_		740	_	897	640	_	_	661	_	1900
	Volume to Capacity Ratio	0.736	—	_	0.752	—	0.724	0.656	—	_	0.465	—	0.325
Calibrated –	Control Delay (sec/veh)	18.4	_	_	21.8	_	17.4	19.0	_	_	12.4	_	0.0
	Level of Service	С	—		С	—	С	С	—	_	В	—	A
L	95th-Percentile Queue (veh)	7	—	—	7	—	6	5	—	—	2	—	1
		1											
	Capacity, Entry (vph)	681	_		576	_	704		_		513		
	Volume to Capacity Ratio	0.945	—		0.968	—	0.922		—	_	0.600	-	- 0.325
Non-Calibrated –	Control Delay (sec/veh)	46.6	_			_	41.6		_		20.0		
	Level of Service	E	—	_	F	—	E		—	_	C	_	– A
	95th-Percentile Queue (veh)	13	_	_	13	_	13	9	—	_	4	_	- 1

HCM 2010 LIMITATIONS

AGENDA Synchro HCM 2010

- SimTraffic
- Upstream/downstream roundabouts or signalized intersections
- Extremely high entering traffic volumes
- High volumes of pedestrians
- More than two entry lanes
- Limited or short entry designs
- Pedestrian model not based on U.S. roundabouts
- Bicycle operations not available

SIMTRAFFIC 9 DEFINED

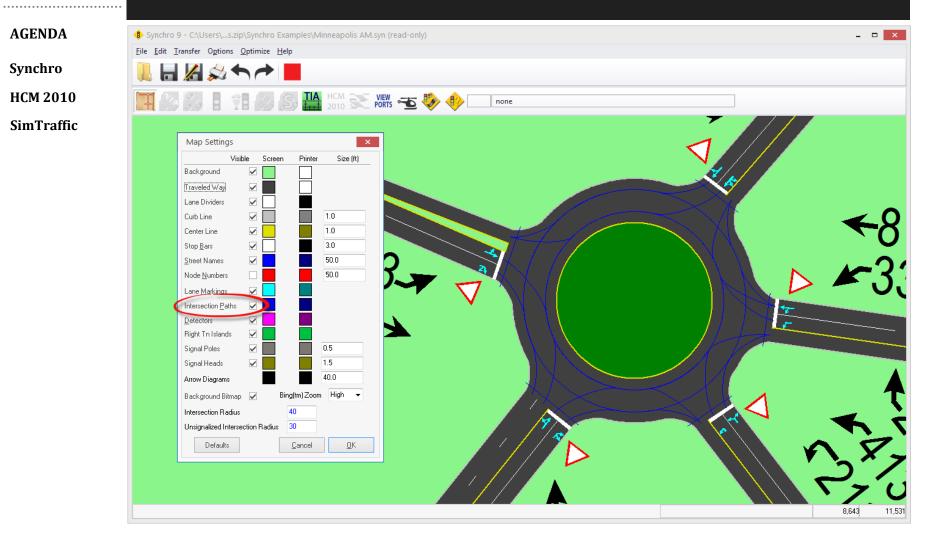
AGENDA

Synchro

HCM 2010

- Microscopic Simulation Model
 - Simulate a wide variety of traffic control
 - Each vehicle individually tracked every 0.1 second
 - Vary driver behavior (aggressive to passive)
 - Measures queuing and blocking
 - Real-world type model
 - Account for affects of upstream signalized intersections or roundabouts

SIMTRAFFIC 9 DEFINED


AGENDA

Synchro

HCM 2010

- Simulating roundabouts within SimTraffic allows more flexibility
- The number of circulating lanes within the roundabout can be user defined to mimic real world applications

SIMTRAFFIC CALIBRATION: VEHICLE PATHS

SIMTRAFFIC CALIBRATION: VEHICLE PATHS AGENDA Synchro 9 - C:\Users\...s.zip\Synchro Examples\Minneapolis AM.syn (read-only) - 🗆 🗙 File Edit Transfer Options Optimize Help Synchro **HCM 2010** HCM 💽 -5 🍫 🚸 × • + + 🗙 🗡 Synchro 9 - C:\Users\...s.zip\Synchro Examples\Minneapolis AM.syn (read-only) SimTraffic ٤ -File Edit Transfer Options Optimize Help $\mathbf{\xi}$ * ATION SETTINGS WBL WBT WBR WBL2 $\blacksquare \square \bowtie \bowtie \frown \frown$ Lane Alignment g (#RL) 4 (vph) 337 81 0 S TIA 2010 Futur ume (vph) 0 337 81 -5 Stora , e Length (ft) 0 Storage Lanes (#) × 🔳 🛛 🔸 🗲 🗙 🗡 Taper Length (ft) ٤ + < ₩-Lane Alignment Left Left Right Right SIMULATION SETTINGS WBL WBT WBR Lane Width (ft) 12 12 12 Lanes and Sharing (#RL) Enter Blocked Intersection ÷. No No No No Traffic Volume (vph) 337 81 Median Width (ft) 12 0 Future Volume (vph) Link Offset (ft) 337 81 0 _ 0 _ Storage Length (ft) 0 Crosswalk Width (ft) 16 TWLTL Median Storage Lanes (#) _ Headway Factor Taper Length (ft) 1.00 1.00 1.00 1.00 Lane Alignment Left Left(Left Rig Turning Speed (mph) 15 15 Lane Width (ft) 12 12 Mandatory Distance (ft) 12 200 Enter Blocked Intersection Positioning Distance (ft) No No No 1320 Median Width (ft) 12 Mandatory Distance 2 (ft) 880 Link Offset (ft) 0 Positioning Distance 2 (ft) 1760 Crosswalk Width (ft) 16 TWLTL Median Headway Factor 1.00 1.00 1.00 1.00 Turning Speed (mph) 15 15 Mandatory Distance (ft) 200 Positioning Distance (ft) 1320 Mandatory Distance 2 (ft) 880 Positioning Distance 2 (ft) 1760 Intersection Add Lane Alignmen 8,916 11,405 8,940 11,436

SIMTRAFFIC CALIBRATION: VEHICLE TYPES AGENDA Synchro Heavy Vehicles SimTraffic Parameters **HCM 2010** Vehicles Drivers Intervals Data Options SimTraffic 2 Vehicles Types 3 5 6 7 8 9 10 1 4 Truck SU SemiTrk1 SemiTrk2 Truck DB Carpool1 Carpool2 Vehicle Name Car2 Car1 Bus Vehicle Occurence (%) 0.64 0.16 0.60 0.10 0.05 0.05 0.20 0.16 0.04 0.0 Acceleration File Vehicle Length (ft) 16.0 35.0 53.0 53.0 64.0 40.0 16.0 16. 14.014.0 Vehicle Width (ft) 6.0 8.0 8.0 8.0 8.0 6.0 6.0 6.0 8.0l 6.0l Vehicle Fleet Car Car Trk Trk Trk Trk Bus Pool Ca Pool Occupancy (# people) 1.2 1.2 2.8 1. 1.3 1.3 1.2 1.2 20.0l 2.8 Graphics Shape Car Car Truck SemiTrk SemiTrk DBTruck Bus Carl Car Ca Table Index (1 to 7) 1 2 3 4 5 6 7 1 2 Default Vehicle and Driver Parameters <u>0</u>K Cancel

SIMTRAFFIC CALIBRATION: DRIVER TYPES

AGENDA

Synchro

HCM 2010

	Options									
Driver Types	1	2	3	4	5	6	7	8	9	10
Yellow Decel (ft/s^2)	12.0	12.0	12.0	12.0	12.0	11.0	10.0	9.0	8.0	7.
Speed Factor (%)	0.85	0.88	0.92	0.95	0.98	1.02	1.05	1.08	1.12	1.1
Courtesy Decel (ft/s^2)	10.0	9.0	8.0	7.0	6.0	5.0	4.0	4.0	3.0	3.
Yellow React (s)	0.7	0.9	1.0	1.0	1.2	1.3	1.3	1.4	1.4	1.
Green React (s)	0.8	0.7	0.6	0.6	0.5	0.5	0.5	0.4	0.3	0.
Headway @ 0 mph (s)	0.65	0.63	0.60	0.58	0.55	0.45	0.42	0.40	0.37	0.3
Headway @ 20 mph (s)	1.80	1.70	1.60	1.50	1.40	1.20	1.10	1.00	0.90	0.8
Headway @ 50 mph (s)	2.20	2.00	1.90	1.80	1.70	1.50	1.40	1.30	1.20	1.0
Headway @ 80 mph (s)	2.20	2.00	1.90	1.80	1.70	1.50	1.40	1.30	1.20	1.0
Gap Acceptance Factor	1.15	1.12	1.10	1.05	1.00	1.00	0.95	0.90	0.88	0.8
Positioning Advantage (veh)	15.0	15.0	15.0	15.0	15.0	2.0	2.0	2.0	1.2	1.
Optional Advantage (veh)	2.3	2.3	2.3	1.0	1.0	1.0	1.0	1.0	0.5	0.
Mandatory Dist Adj (%)	200	170	150	135	110	90	80	70	60	5
Positioning Dist Adj (%)	150	140	130	120	110	95	90	80	70	E
Avg Lane Change Time (s)	55	50	45	40	35	30	25	20	15	1
Lane Change Variance +/- (%)	10	10	10	20	20	20	30	30	30	3
<u>D</u> K <u>C</u> ancel]	<u>D</u> efau	lt Veh	icle and Driv	er Paramete	ers				

- Calibrate Headway to local conditions
- Mandatory & Positioning Distance control lane change distances

SIMTRAFFIC CALIBRATION: DRIVER TYPES

AGENDA
Synchro
HCM 2010
SimTraffic

<u>File Edit Transfer Options</u>	<u>O</u> ptimiz	e <u>H</u> elp																		
📜 🔚 🔏 🚧																				
🛄 🦓 🖏 🚥 🛛	78 🖉	(S		HCM 2010	VIE POR	W TS	i	•	1											
× 🔳 🔴 🔶 🔺 🔪	1	_																		
SIMULATION SETTINGS	EBL		EBR	EBR2	WBL2	K WBL	← WBT	VBR	NWL2	NWL	Č NWB	₹ NWR2	↑ NEL	≯ NET	▶ NER	NER2	SWL2	í SWL	K SWT	swf
Lanes and Sharing (#RL)		र्भ	đ.			٦	र्भ		ሻ	Y				ę	E.				4î»	
raffic Volume (vph)	3	17	43	68	0	337	81	0	211	413	25	0	155	181	209	24	5	13	118	
uture Volume (vph)	3	17	43	68	0	337	81	0	211	413	25	0	155	181	209	24	5	13	118	
itorage Length (ft)	0	—	0	-	_	0	_	0	_	0	0	-	0	—	0	—	_	0	_	
itorage Lanes (#)	—	_	_	-	_	_	_	_	_	_	_	_	_	_	_	—	_	_	_	
Taper Length (ft)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
.ane Alignment	Left	Left	Right	Right	Left	Left R	light	▼ Right	Left	Right	Right	Right	Left	Left	Right	Right	Left	Left	Left	R
.ane Width (ft)	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	12	
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	No	
rledian Width (ft)	—	12	_	—	_	—	12	—	—	24	_	—	_	0	_	—	—		0	
.ink Offset (ft)	_	0	_	_	_	_	0	—		0	_	_	_	0	_	—	—	_	0	
Crosswalk Width (ft)	—	16	—	_	_	_	16	—		16	_	_	_	16	_	—	—	_	16	
WLTL Median	—		_	-	_	—		—			_	_	_		_	—	—	_		
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1.00	1.00	1.00	1.00	1.00		1.00	1.00	1
urning Speed (mph)	15	—	9	9	15	15	-	9	15	15	9	9	15	-	9	9	15	15	—	
Aandatory Distance (ft)	—	200	—	—	—	—	200	—	—	200	—	—	—	200	—	-	—		200	
Positioning Distance (ft)	—	1320		—	_	_	1320	-	—	1320		—		1320	_	-	—		1320	
Aandatory Distance 2 (ft)	—	880	—	—	—	—	880	-	—	880	—	—	—	880	—	-	—	—	880	
Positioning Distance 2 (ft)	—	1760	—	-		—	1760	_	_	1760	_	-	—	1760	—	—		—	1760	

- Synchro's Simulation Settings are LOCAL
- SimTraffic's Driver Parameters are GLOBAL

SIMTRAFFIC CALIBRATION: MULTIPOINT ROUNDABOUTS

Individual Nodes may be

used to increase flexibility

AGENDA

Synchro

HCM 2010

SUMMARY

AGENDA

Synchro

HCM 2010

- SimTraffic
- Synchro and HCM 2010 Inputs
- Synchro Simulation Inputs
 - SimTraffic Parameters for Roundabouts
 - Simulation Requires Additional Effort

REFERENCES

AGENDA Synchro HCM 2010

- FHWA. 2004. Traffic Analysis Toolbox Volume III: Guidelines for Applying Traffic Microsimulation Modeling Software. FHWA, Turner-Fairbank Highway Research Center, FHWA-HRT-04-040, Springfield, VA.
- Trafficware. 2015. Synchro Studio 9 User's Manual, Sugar Land, TX.
- TRB. Highway Capacity Manual. Transportation Research Board, National Research Council, Washington DC, 2010. Highway Capacity Manual 2010. Copyright, National Academy of Sciences, Washington, D.C. Exhibit 21-8, p. 21-10; Exhibit 21-23, p. 21-28; and Exhibit 21-24, p. 21-33.
- Guan, F., Lu G. & Noyce D. 2010. A Simulation-Based Accessibility Study of Modern Urban Roundabouts Signalized with Common Pedestrian Signals. In Proceedings of the 2010 Mid-Continent Transportation Research Forum. University of Wisconsin – Madison, Traffic Operations & Safety (TOPS) Laboratory.

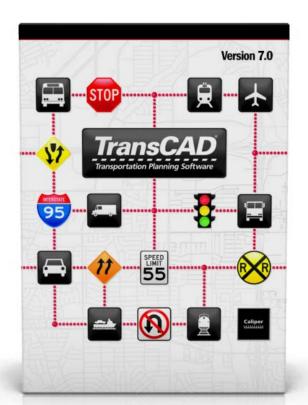
REFERENCES

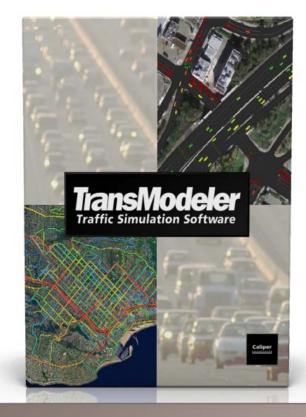
AGENDA Synchro HCM 2010

- Collins, R. 2008. Evaluation of a Roundabout at a Five-Way Intersection: An Alternatives Analysis Using Microsimulation. University of Minnesota.
 - Wong, Eric. May 2011. Modern Roundabout in Connecticut: An Evaluation of Real World Operation Versus Common Macroscopic and Microscopic Models. New England Chronicle. ITE Northeastern District.
 - Barry, C. 2012. Calibration of the HCM 2010 Roundabout Capacity Equations for Georgia Conditions. A Thesis Presented to The Academic Faculty of Georgia Institute of Technology.
 - Wisconsin Traffic Operations and Safety (TOPS) Laboratory. 2011. Comprehensive Evaluation of Wisconsin Roundabouts Volume 1: Traffic Operations.

TOOLS FOR ANALYSIS OF CAPACITY AND EFFICIENT FLOW FOR ROUNDABOUT DESIGN-PART III: TRANSMODELER

Daniel Morgan, Vice President & Director of Traffic Simulation CALIPER CORPORATION


Caliper Transportation Software Solutions


Presentation Outline

- Introduction to Caliper and TransModeler
- Model inputs and methods
 - Step by step data input
- Model output
 - Producing model outputs
- TransModeler strengths and advantages

Caliper Corporation: TransCAD & TransModeler

PLANNING: forecast travel demand

OPERATIONS: simulate project impacts

Caliper Transportation Software Solutions 2

TransModeler SE

	TransModeler	TransModeler SE		
Network Size Limits	Unlimited	20 Intersections/ 100 Links		
SIMULATION	TransModeler	TransModeler SE		
Microsimulation (freeways, urban streets, 2-lane highways, roundabouts)	•	•		
Multi-modal simulation (auto, truck, bicycle)	•	•		
Public transportation (bus & rail operations)	•			
DEMAND AND ASSIGNMENT	TransModeler	TransModeler SE		
Turning movement-based demand	•	•		
Origin-destination matrix-based demand	•	•		
Simulation-based dynamic traffic assignment	•			
TRAFFIC SIGNALS	TransModeler	TransModeler SE		
Traffic signal optimization	•	•		
Simulation-based coordinated signal optimization	•	•		
MUTCD signal warrant evaluation	•	•		
Traffic signal priority and preemption	•			
TRAFFIC IMPACT ANALYSIS	TransModeler	TransModeler SE		
Traffic Impact Analysis toolbox	•	•		
ITE 9th Edition and custom trip generation rates	•	•		
Simulation-based HCM 2010 LOS	•	•		
VISUALIZATION	TransModeler	TransModeler SE		
3-D visualization and animation	•	•		
Built-in Google/USGS web map layer imagery	•	•		

TransModeler 55 · Powerful Microsimulation Traffic Impact Analysis Caliper Corridor Signal Optimization •HCM2010 Compatible

Caliper Transportation Software Solutions 3

- 1. Bundles Microsimulation and HCM2010 Analysis
- **2. Enables Ground Truth Geometry**
- **3. Scales for Broader Roundabout Impacts**

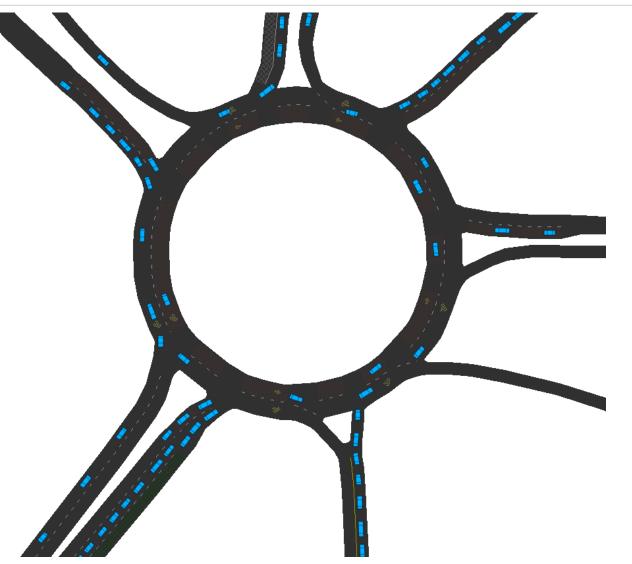
TransModeler in 3 Key Points

KEY POINT 1: Microsimulation + HCM2010

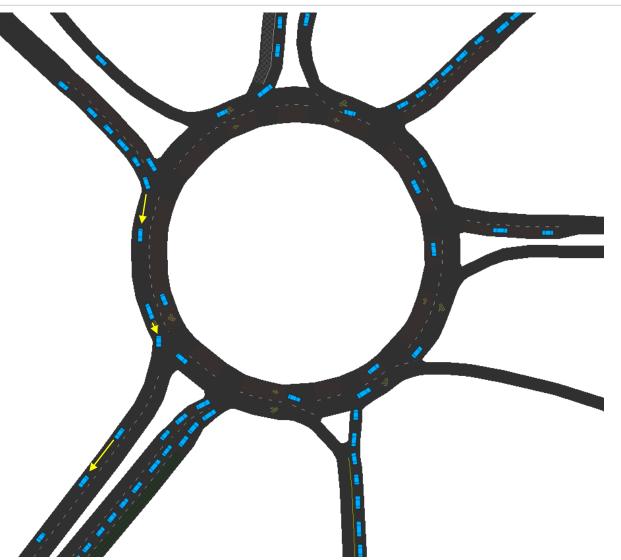

- Integration of HCM with Microsimulation
 - HCM2010 methods for intersections
 - Simulation-based LOS for all facility types

Driver behaviors

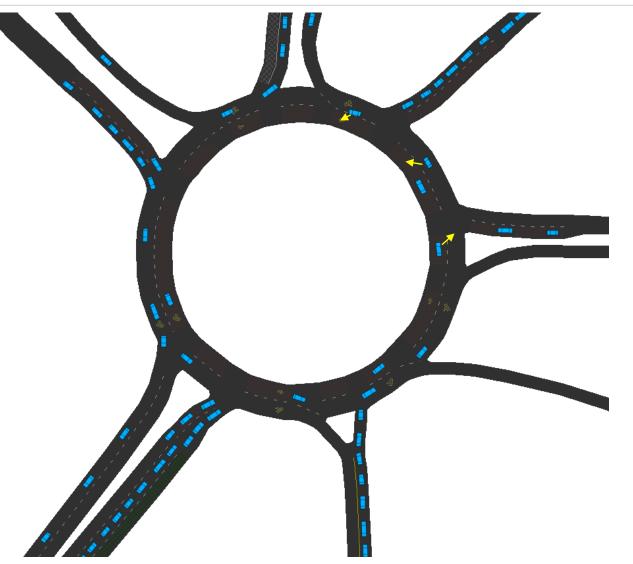
- Core algorithms: car following and lane changing
- Enhanced, extended for congested merge & weave, oversaturated conditions

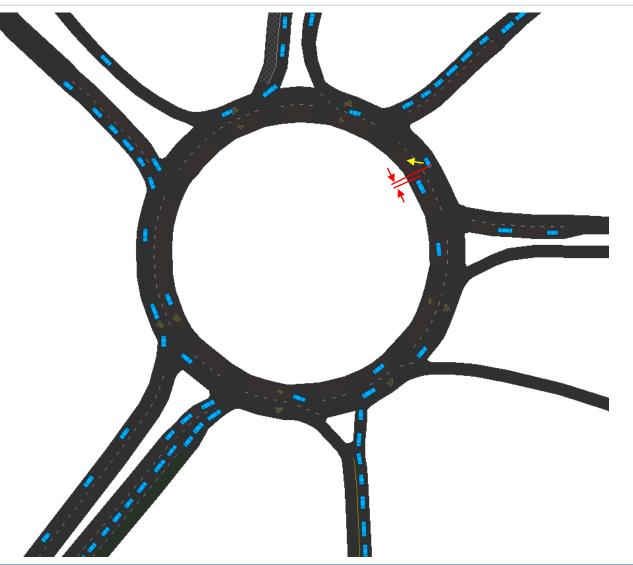

Route choice

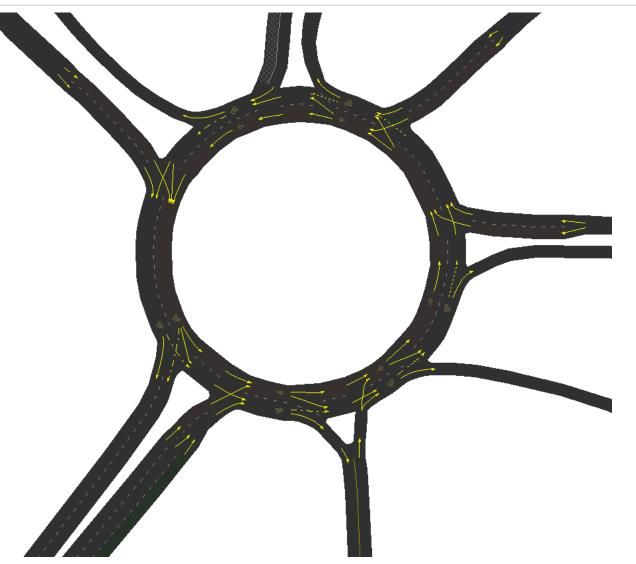
- Fast computation for large networks
- High-fidelity simulation-based DTA

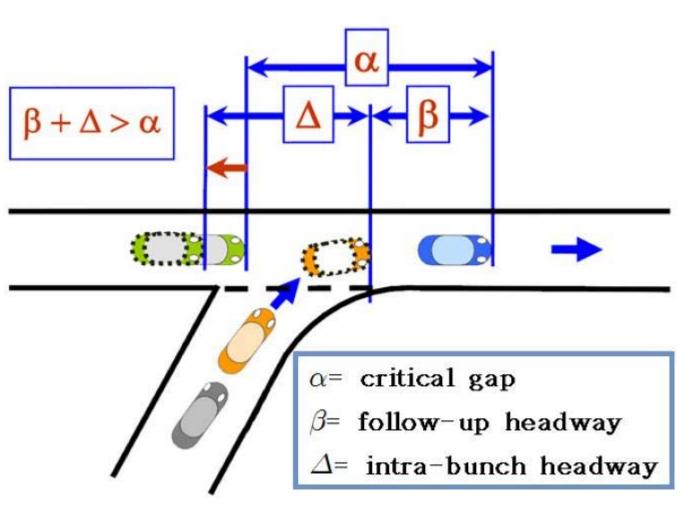


KEY POINT 1: Microsimulation Methods

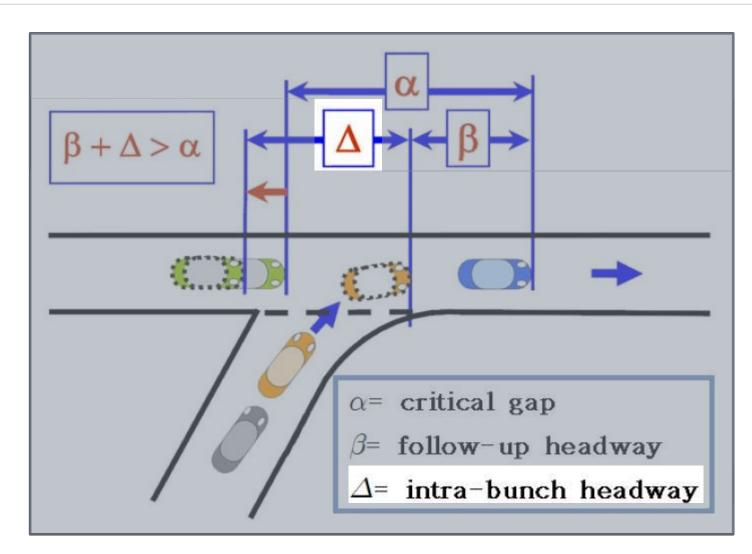

- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference


- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference

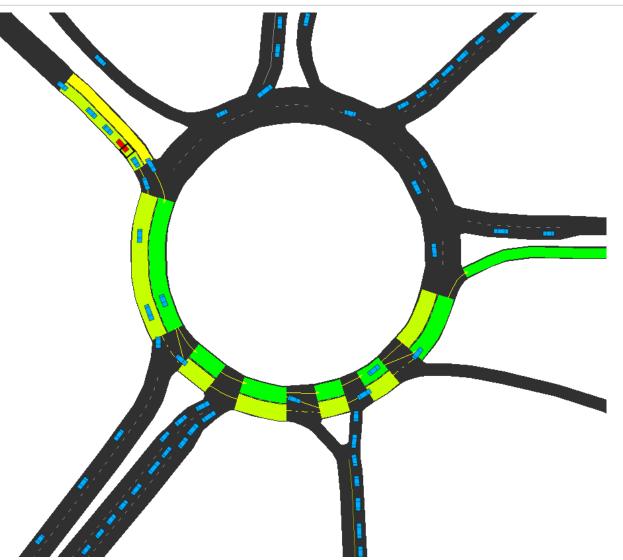

- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference


- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference

- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference



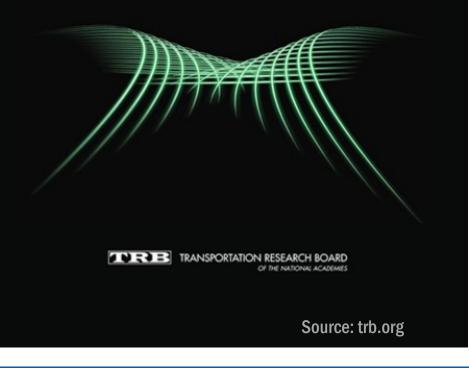
- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-Specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference



Source: International Journal of Highway Engineering Vol.15 No.5 pp.217-226

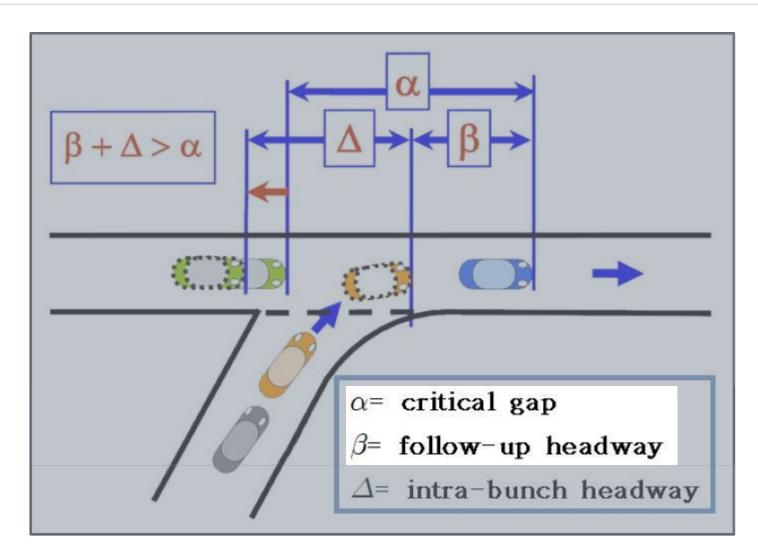
- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-Specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference

- Core Microsimulation Algorithms
 - Car Following
 - Lane Changing
 - Gap Acceptance
 - Geometric, Striping Effects
- Roundabout-Specific Driver Behaviors
 - (Intrabunch) Headway Gap Acceptance
 - Circulating Lane Preference

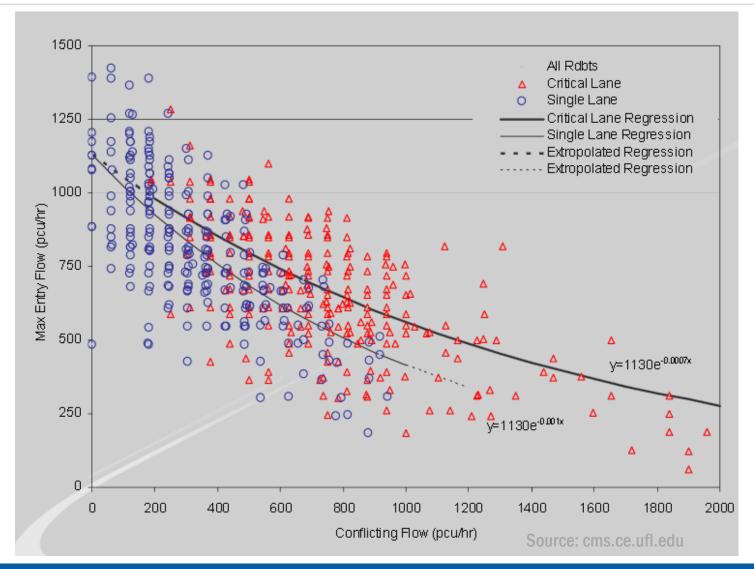

KEY POINT 1: HCM2010 Methods

Chapter 21

- Calibrate to Critical Gap Headway, Follow-up Headway
- Derived from Empirical Data (NCHRP 3-92)


HCM2010

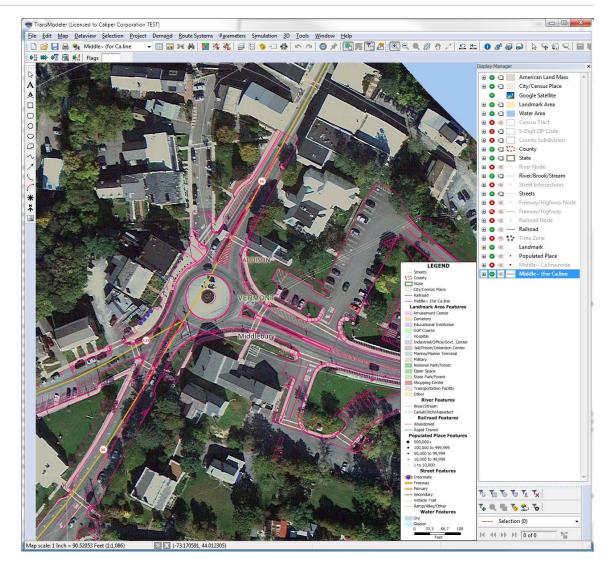
HIGHWAY CAPACITY MANUAL


KEY POINT 1: HCM2010 Methods

- Chapter 21
- Calibrate to Critical Gap Headway, Follow-up Headway
- Derived from Empirical Data (NCHRP 3-92)

KEY POINT 1: HCM2010 Methods

- Chapter 21
- Calibrate to Critical Gap Headway, Follow-up Headway
- Derived from Empirical Data (NCHRP 3-92)


KEY POINT 2: Ground Truth Geometry

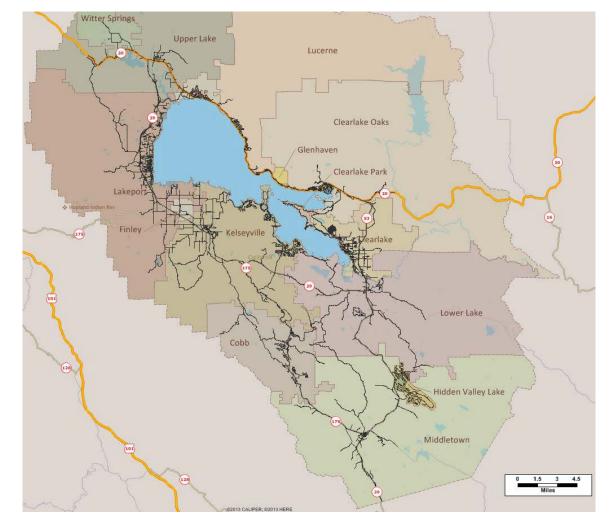
Road Network Development

- Tools make common road editing tasks routine
- Automation of priority, ROW, gap determination
- Quickdraw roundabout creation
- Complete flexibility for modeling alternative and novel roundabout designs

KEY POINT 2: Ground Truth Geometry

- Easy access to and integration with GIS and CAD data
 - Pre-installed with extensive map and census data (street line data, state/county/municipality boundaries, populated places, rail, water, etc.)
 - Built-in Google/USGS web map layers
 - The ability to import AutoCAD files

KEY POINT 3: Scales for Broader Roundabout Impacts


- Broad Range of Applications
 - Traditional traffic impact studies
 - Geometric design
 - Capacity analysis
 - Alternatives analysis
 - Signal timing, optimization
 - ITS

KEY POINT 3: Scales for Broader Roundabout Impacts

Wide area simulation

- GIS facilitates network, model data development
- Optimized for modern multi-core processors
- Hybrid simulation for tailoring to run-time needs

KEY POINT 3: Scales for Broader Roundabout Impacts

Travel Demand Model Integration

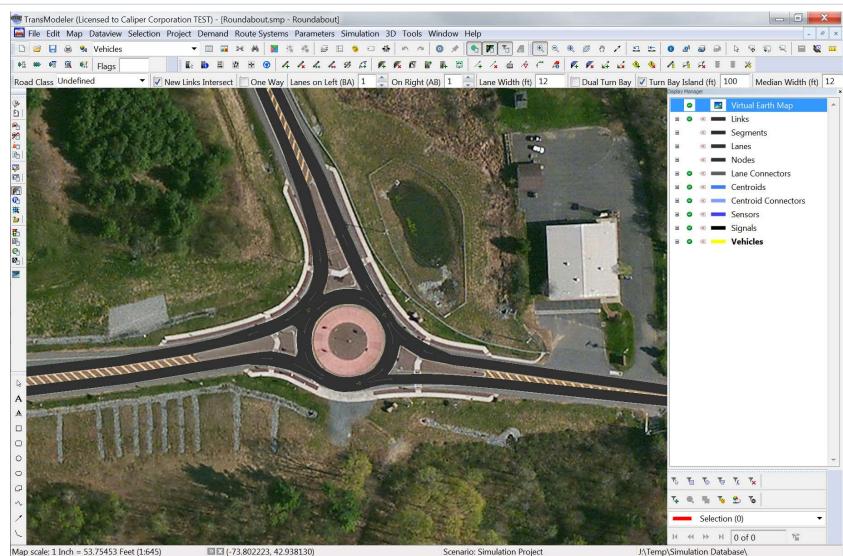
- Imports streets from planning networks
- Simulates matrices from subarea analyses
- Compatible with all styles of travel models and all travel demand model platforms
 - Links to traffic analysis zone (TAZ) centroids
 - Streamlines project impact analysis, prioritization

Step-by-Step Data Input

Roundabouts in TransModeler

Easy to Locate Existing Roundabouts

- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally


Roundabout Quickdraw

- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally

Detailed Roundabout Representations

- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally

Import from AutoCAD

- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally

Add Traffic Signals

- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally

Input Traffic Demand

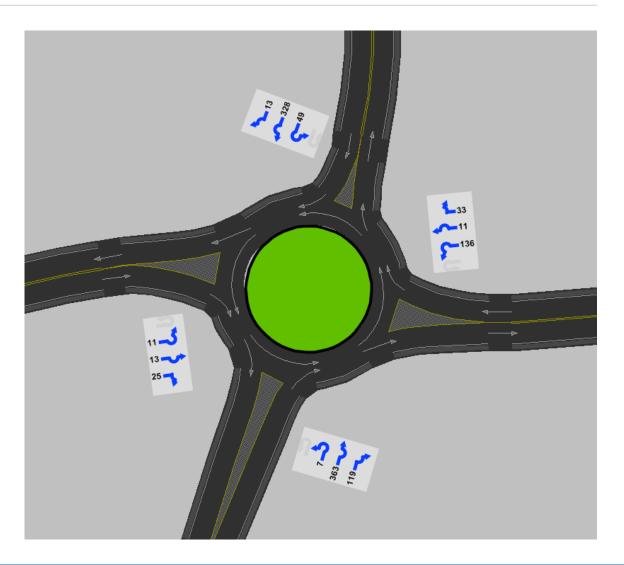
- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally

Adjust Roundabout Parameters

- 1. Draw geographically accurate road network using built-in tools
- 2. Add intersection controls (e.g., traffic signals), if applicable
- 3. Input traffic demand (e.g., TM counts, O-D matrices)
- 4. Adjust parameters
 - Headway Threshold (Intrabunch Headway)
 - Circulating Lane
 Preference: locally or globally

Car Following - Car Following (Advanced) Headway - Thresholds Buffer Lane Changing Discretionary (DLC) - Model Selection - Neighboring Lane Model - Target Lane Model - Target Lane Model - Contral Distance - General Fleet - Transit Vehicles - Shared Center Lanes Gap Acceptance - Model Selection - Linear Model - Non-Linear Model - Non-Linear Model - Non-Linear Model - Non-Linear Model - Sassing - General - Desire to Pass - Gap Acceptance - Marging, Crossing, and Yielding - Headway Thresholds - Following Headways for Merging - Yielding Roundabouts - General	Inner lane(s) 0.10 0.50 1.00 1.00	Oute
Carifollowing (Advanced) Carifollowing (Advanced) Headway Thresholds Buffer Lane Changing Discretionary (DLC) Model Selection Neighboring Lane Model Target Lane Model Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Tralelowing Headways for Merging Roundabouts	0.10 0.50 1.00	Oute
 Headway Thresholds Buffer Lane Changing Discretionary (DLC) Model Selection Neighboring Lane Model Target Lane Model Mandatory (MLC) Look Ahead Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model Non-Linear Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Tresholds Following Headways for Merging Yielding Roundabouts 	0.10 0.50 1.00	Oute
Ist Ist Ist Discretionary (DLC) Model Selection Neighboring Lane Model 3rd Target Lane Model 4th & greater Mandatory (MLC) - Look Ahead Critical Distance - General Fleet Transit Vehicles - Shared Center Lanes Gap Acceptance - Model Selection - Non-Linear Model - Non-Linear Model - Desire to Pass - Gap Acceptance Merging. Crossing, and Yielding - Following Headways for Merging - Yielding - Yielding - Roundabouts - Non-Linear Model	0.50	
Buffer Buffer Lane Changing Discretionary (DLC) Model Selection Neighboring Lane Model Target Lane Model Mandatory (MLC) Cotical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model Non-Linear Model Non-Linear Model Marging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts	0.50	
Lane Changing Discretionary (DLC) Model Selection Gap Acceptance Model Selection Linear Model Passing Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts	1.00	
 Discretionary (DLC) Model Selection Neighboring Lane Model Target Lane Model Mandatory (MLC) Look Ahead Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
 Model Selection Neighboring Lane Model Target Lane Model Mandatory (MLC) Look Ahead Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Model Selection Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
Neighboring Lane Model Target Lane Model Mandatory (MLC) Look Ahead Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model Non-Linear Model Non-Linear Model Gap Acceptance General Desire to Pass Gap Acceptance Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts	1.00	
Target Lane Model Mandatory (MLC) Look Ahead Oritical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model Non-Linear Model Nogli M Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headways for Merging Yielding Roundabouts		
Mandatory (MLC) -Look Ahead Critical Distance -General Fleet Transit Vehicles -Shared Center Lanes Gap Acceptance -Model Selection -Linear Model NGSIM Model Passing -General -Desire to Pass -Gap Acceptance Merging, Crossing, and Yielding -Headway Thresholds -Following Headways for Merging -Yielding Roundabouts		
 Look Ahead Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
Critical Distance General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts		
General Fleet Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts		
 Transit Vehicles Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
 Shared Center Lanes Gap Acceptance Model Selection Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
Gap Acceptance - Model Selection - Linear Model - Non-Linear Model - Non-Linear Model - NGSIM Model Passing - General - Desire to Pass - Gap Acceptance Merging, Crossing, and Yielding - Headway Thresholds - Following Headways for Merging - Yielding Roundabouts		
 Model Selection Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
 Linear Model Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
 Non-Linear Model NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
NGSIM Model Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts		
Passing General Desire to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging _Yielding Roundabouts		
Gap Acceptance Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging _Yielding Roundabouts		
Policy to Pass Gap Acceptance Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts		
Gap Acceptance → Merging, Crossing, and Yielding → Headway Thresholds → Following Headways for Merging → Yielding ➡ Roundabouts		
Merging, Crossing, and Yielding Headway Thresholds Following Headways for Merging Yielding Roundabouts		
 Headway Thresholds Following Headways for Merging Yielding Roundabouts 		
 Following Headways for Merging Yielding ☐ Roundabouts 		
 Following Headways for Merging Yielding ☐ Roundabouts 		
☐ Yielding ⊟ Roundabouts		
Circulating Lane Preference		

Output **Roundabouts in TransModeler**

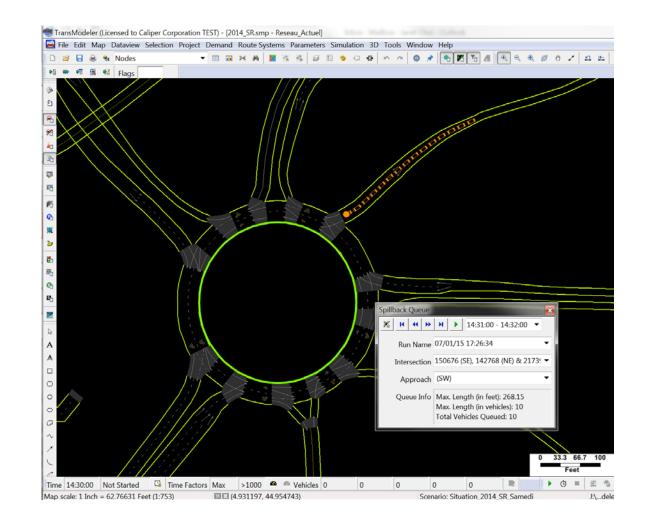

HCM 2014 Roundabout LOS

🗟 Whitley_Roundabout.smp - Simulation Project

							 Display Mana 	
							8	🔀 Google Satellite
inals.tms)								
	-							Node 8 (A)
								·
•	Flow Interva	al (min.) 60	•				Base Saturatio	on Flow Rate (pc/h/ln) 1900 0
⇒	⇔	Û	Û	¢	¢	Û	Û	
7 (E)	7 (E)	6 (NE)	6 (NE)	8 (NW)	8 (NW)	1 (SW)	1 (SW)	
L	R	L	R	L	R	L	R	
520	<==	59	<==	375	<==	159	<==	
0.92	<==	0.92	<==	0.92	<==	0.92	<==	
22	29	211	279	78	103	168	223	
0.92	<==	0.92	<==	0.92	<==	0.92	<==	
565	565	64	64	408	408	173	173	
23	31	229	304	85	112	183	242	
761	740	1080	1077	849	832	1001	<mark>9</mark> 93	
0.031	0.042	0.212	0.282	0.100	0.135	0.183	0.244	
5.036	5.290	5.286	6.059	5.204	5.671	5.309	6.014	
0.095	0.131	0.801	1.164	0.331	0.465	0.666	0.959	
А	А	А	А	А	А	А	А	
						undabout Dela	F 3	Level of Service A
	 □ □	▼ Flow Interval □ Flow Interval □ 7 (E) I 7 (E) L R 520 <==	Flow Interval (min.) 60 ⇒ 1 ⇒ 1 7 (E) 7 (E) 6 (NE) L R L 520 <==	Flow Interval (min.) 60 \approx \hat{v} \hat{v} γ (E) 7 (E) 6 (NE) 6 (NE) L R L R 520 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<==$ 0.92 $<=$ 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92	Image: Flow Interval (min.) 60 Image: Flow Int	Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) Image: Plow Interval (min.) 60 $Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 Image: Plow Interval (min.) 60 7 (E) 77 (E) 6 (NE) 6 (NE) 8 (NW) 8 (NW) L R L R L R L R 5200 <1=20 60.92 <1=20 0.92 <1=20 0.92 <1=20 0.92 <1=20 30.4 40.8 40.8 40.8 11.2 0.92 52.90 52.86$	Plow Interval 60 9 Prov Interval 60 9 Prov Interval 9	Flow Interval (min.) 60 Sease Saturation Pick Ŷ Ŷ Pick Pick

Generate Turning Movement Counts from Simulation

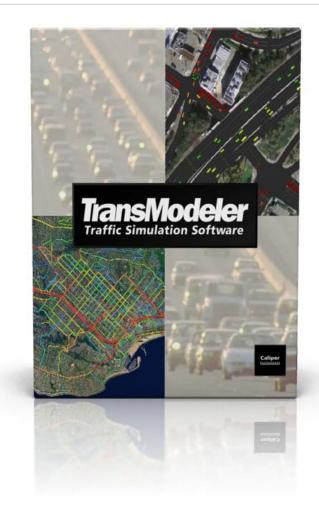
 Produce turning movement counts from simulations

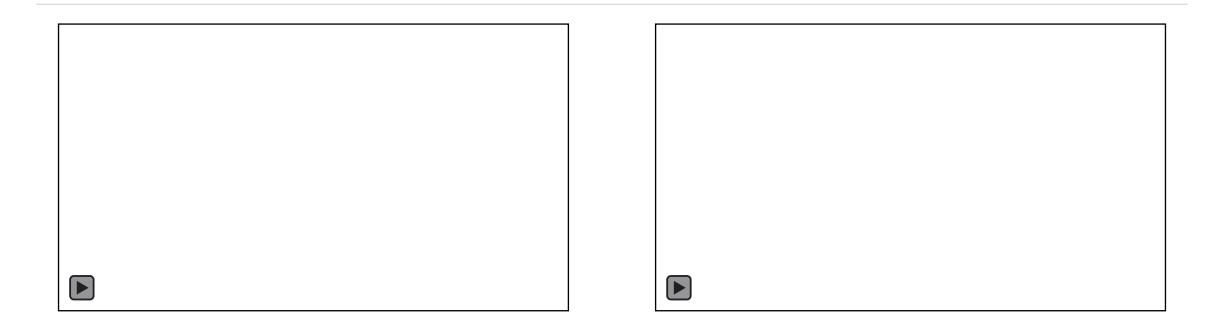


Simulation Output Reports

- Roundabout LOS
- Roundabout LOS by Lane

Other Simulation Outputs


- Lane and spillback queues
- Travel times
- VHT, VMT, trip lengths, travel times



Summary of Key Strengths

Key Strengths of TransModeler

- High-fidelity microsimulation for the most robust operational analysis
- HCM2010 Level of Service analysis, deterministic *and simulation-based*
- Ground truth geometric accuracy, assisted by CAD and GIS
- Scalable for networks, wide geographic areas, and broader range of applications

Thank you!

Questions?

daniel@caliper.com