• HOME
  • MyTRB
  • CONTACT US
  • DIRECTORY
  • E-NEWSLETTER
  • SUBSCRIBE
  • RSS
  • HOME
    • MyTRB
    • CONTACT US
    • DIRECTORY
    • E-NEWSLETTER
    • SUBSCRIBE
    • RSS
  • About TRB
    • Get Involved with TRB
    • Mission & Services
    • Strategic Plan
    • Centennial Celebration
    • TRB Divisions
      • Executive Office
      • Administration & Finance
      • Cooperative Research Programs
      • Studies and Special Programs
      • Strategic Highway Research Program 2
      • Technical Activities
    • Sponsors & Affiliates
    • Awards
    • Facilities & Directions
    • Job Openings
  • Annual Meeting
    • Program
    • Registration
    • Resource Pages
    • Exhibits & Marketing Opportunities
    • Online Program
    • Announcements
  • Calendar
    • TRB Conferences
    • TRB Webinars
    • All TRB Events
    • Cosponsored Events
  • Committees & Panels
    • Executive Committee
    • Standing Committees
    • Policy Committees
    • Marine Board Members
    • Committee & Panel Homepages
    • Cooperative Research Panels
      • Highway (NCHRP)
      • Transit (TCRP)
      • Airport (ACRP)
      • Freight (NCFRP)
      • Hazardous Materials (HMCRP)
      • Rail (NCRRP)
    • Synthesis Panels
      • Highway
      • Transit
      • Airport
    • IDEA
      • Safety IDEA
  • MyTRB
  • Programs
    • Cooperative Research
      • Highway (NCHRP)
      • Transit (TCRP)
      • Airport (ACRP)
      • Behavioral Traffic Safety (BTSCRP)
      • Freight (NCFRP)
      • Hazardous Materials (HMCRP)
      • Rail (NCRRP)
    • Synthesis
      • Highway
      • Transit
      • Airport
      • Truck & Bus Safety
    • Innovations Deserving Exploratory Analysis (IDEA)
    • Legal Research
    • Marine Board
    • Consensus and Advisory Studies
    • Strategic Highway Research Program 2 (SHRP 2)
      • SHRP 2 Naturalistic Driving Study Data Access
      • SHRP 2 Archives
    • Transportation Research Information Services (TRIS)
  • Projects
    • Find a Project
    • Requests for Proposals
    • Requests for Information
    • Upcoming Projects
  • Publications
    • Bookstore
    • Subscription Services
    • by Series
    • by Subject
    • E-Newsletter
    • Transportation Research Record Online
    • Publications Index
    • Errata
  • Resources & Databases
    • Webinars
    • Conference Recordings
    • Research In Progress (RiP)
    • Research Needs Statements (RNS)
    • TRID (A Transportation Research Database)
    • Transportation Research Thesaurus (TRT)
    • SHRP 2 Naturalistic Driving Study Data Access
    • Online Directory
    • Library
    • Research Funding
    • Careers in Motion Job Center
  • Provide Feedback
  • Connect with TRB
All
by Series
by Subject
Errata
Cooperative Research Programs Series
Highway (NCHRP)
Transit (TCRP)
Airport (ACRP)
Hazardous Materials (HMCRP)
Freight (NCFRP)
Rail (NCRRP)
Behavioral Traffic Safety (BTSCRP)
Other TRB Series
Consensus Studies
Strategic Highway Research (SHRP 2)
Exploratory Analysis (IDEA)
Commercial Truck and Bus Safety (CTBSSP)
Conferences and Workshops Proceedings
Transportation Research Circulars
Periodicals and Other Documents
TR News Magazine
Research Pays Off
State of the Art Reports
Millennium Papers
Miscellaneous
Annual Reports
Annual Reports
Access Management Manual, Second Edition



Development of Prototype Soil Moisture Sensors
HRD075
1175
154280

Development of Prototype Soil Moisture Sensors

In an effort to develop innovative sensors for the in situ measurement of moisture in aggregate base and soil subgrade layers of pavements, two prototypes have been developed and laboratory evaluated: a sensor based on nuclear magnetic resonance (NMR) technology and a sensor using dielectric constant technology. Both sensor types are potentially applicable to highway soil moisture measurement problems. Each sensor measures the amount of water in the effective volume of a soil sample and is somewhat influenced by soil type. For a particular soil of known dry density, the percentage water on a dry weight basis can be determined by empirical calibration. Under an extension of this study, the sensors are undergoing (1) refinement and development of ancillary readout equipment; (2) simulated field evaluation over a range of soil, compaction, moisture, and contamination conditions; and (3) field installation and practical evaluation in two different climatic regions. The NMR sensor based on the spin echo approach was tested with bentonite clay, silica flour, and an organic silty clay. The influences of soil density, organic matter and dissolved salts were investigated. In the prototype dielectric model, the sensor electrodes are incorporated as part of a resonance circuit whose frequency of oscillation circuit is contained within the buried sensor; a coaxial cable connects the sensor to the external power supply and readout instrument. It is hoped that in addition to the original objectives, the technology developed in the study may be applied to the development of laboratory instruments for instantaneous measurement of moisture in soil samples without the need for drying.


E-Newsletter Type: Recently Released TRB Publications    
TRB Publication Type: NCHRP Research Results Digest


This Summary Last Modified On: 3/30/2014
Text Size: Increase Text Size Decrease Text Size
Copyright © 2010 All rights reserved. | Legal Terms | Console Login
P: | F: |
The National Academies of Sciences, Engineering, and Medicine

The National Academies of Sciences, Engineering, and Medicine 500 Fifth Street, NW | Washington, DC 20001 | T: 202.334.2000 Copyright © National Academy of Sciences. All Rights Reserved. Terms of Use and Privacy Statement

Loading... Loading...
Please click here to view our sponsor's message.